Posts Tagged ‘Reflow-Ofen’

  1. Solid-State-Relais

    0

    August 11, 2015 by linguasite

    In meinem Reflow-Ofen habe ich Solid-State-Relais von Sharp verbaut. Das kompakte SIL-Gehäuse dieser Baureihe hat mir gut gefallen, außerdem können diese kleinen Teile relative große Lasten (bis zu 16A) schalten. Beim Einkauf war ich aber zunächst etwas ratlos: Die Preisspanne reicht von 2,50 bis knapp 10 Euro. Äußerlich sehen sie alle gleich aus. Wo sind also die Unterschiede?

    SSRS202S02_04

    Ich habe mich für den Typ S202S02 entschieden, weil ich diese Empfehlung in einem Elektronikforum gelesen habe. Damit lag ich nur sehr knapp daneben.

    Schauen wir uns die Typenbezeichnung an.

    S 2 02 S 0 2

    Am Anfang steht immer ein „S“.

    Die folgende „2“ bezeichnet die Nennspannung von 600V. Steht dort eine „1“, ist es die 400V-Ausführung. Da beim Schaltvorgang immer Spannungsspitzen entstehen, sollte für 230V-Schaltungen die 600V-Variante (S2) verwendet werden. Sharp empfiehlt die 400V-Ausführung nur für 120V-Netze.

    S202S02-800x533Die nächsten beiden Ziffern geben einen Hinweis auf den Nennstrom. Die „02“ steht für 8A. Steht dort eine 12, handelt es sich um die 12A-Variante, eine 16 steht für 16A und eine 05 mit 5A gibt es auch, aber irgendwie kam niemand auf die Idee, für 8A eine 8 dort hin zu schreiben. Um die Sache komplizierter zu machen, gibt es auch Bauteile mit kleinerem Gehäuse. Die sind mit einem T gekennzeichnet, z.B. S202T02. Dieses Teil kann nur 2A schalten.

    Die vorletzte Ziffer zeigt an, ob im Bauteil bereits ein Snubber-Circuit integriert ist (0= ohne, 1=mit). Das ist eine Reihenschaltung von Widerstand und Induktivität, das die Flankensteilheit beim Schaltvorgang begrenzt.

    An der letzten Ziffer lässt sich erkennen, ob das Solid-State-Relais im Nulldurchgang schaltet (2) oder nicht (1). Sobald mit induktiven Lasten oder längeren Zuleitungen gearbeitet wird, muss im Nulldurchgang geschaltet werden, sonst hält das Bauteil nicht lange. Nur rein ohmsche Lasten mit kurzer Zuleitung können unter Spannung geschaltet werden.

     

    Beispiele:

    S202S02 – 600V, 8A, kein Snubber, Nulldurchgang-schaltend

    S202S12 – 600V, 8A, Snubber, Nulldurchgang-schaltend

    S216S01 – 600V, 16A, kein Snubber, nicht Nulldurchgang-schaltend

    S202S11 – 600V, 8A, Snubber, nicht Nulldurchgang-schaltend

    Warum habe ich mich mit dem S202S02 nur fast richtig entschieden? Perfekt wäre der Typ S202S12 (mit Snubber) gewesen, der etwa doppelt so teuer wie der S202S02 ist. Die Nulldurchgangsschaltung hätte ich nicht zwingend gebraucht, ist aber sicherer, da ich die Induktivität der Heizstäbe nicht kenne.

    In meine Schaltung musste ich deshalb noch Platz für einen Hochspannungs-Kondensator und einen Hochlastwiderstand einplanen (rechte Platine oben).

    meruto_main_053b

    Datenblätter:

    http://sharp-world.com/products/device/lineup/data/pdf/datasheet/s102t01_e.pdf

    http://www.sharpsme.com/download/s112s01-epdf

    http://sharp-world.com/products/device/lineup/data/pdf/datasheet/s102s11_e.pdf

    http://sharp-world.com/products/device/lineup/data/pdf/datasheet/s102s02_e.pdf


  2. Reflow-Ofen mit IBoard EX

    0

    August 10, 2015 by linguasite

    Die Zeit der Durchsteck-Montage in elektronischen Schaltungen geht auch im Hobby-Bereich dem Ende zu. SMD-Bauteile sind inzwischen so klein, dass nur mit feinstem Lötwerkzeug und unter dem Mikroskop noch eine saubere manuelle Montage gelingt. Deshalb gehört heute auch ein Reflow-Ofen in die Bastelwerkstatt. Bleibt die Frage: Selber bauen oder kaufen? Für mich gab es da natürlich nur eine Antwort.

    Nun bin ich weder der erste noch der einzige Bastler, der sich einen Lötofen baut, und deshalb habe ich mir erst mal ein paar Inspirationen geholt, versucht, das Prinzip der Regelung zu verstehen und zu wissen, worauf ich bei der Konstruktion achten muss.

    Zunächst brauchen wir einen geeigneten Pizza-Ofen. Er sollte oben und unten mindestens zwei Quarz-Heizstäbe haben und die Leistung muss deutlich über 1000 Watt betragen, damit eine kurze Aufheizphase möglich ist. 1500 Watt wären ideal, habe ich festgestellt. Bei mir sind es 1200 Watt in einem Aldi-Modell, das ich für 15 Euro bei Ebay gefunden habe. Das genügt gerade so, um die erforderliche Aufheizkurve abfahren zu können.

    So ungefähr sah das Teil aus, bevor ich es zerlegt habe, allerdings mit silberner Oberfläche und in neuwertigem Zustand:

    fif1200

    Beim nächsten Projekt würde ich mich vermutlich anders entscheiden und ein flacheres Gerät mit mehr Leistung wählen, das auch gerne etwas hochwertiger verarbeitet sein darf. Das Blech dieses Ofens ist schon sehr dünn und hat mir bei der Bearbeitung einige Sorgen bereitet.

    Meine Vorgaben sahen folgendermaßen aus:

    meruto_panel_005_licht_expSeparate Ansteuerung für Ober- und Unterhitze, zwei Temperaturfühler (Platinen- und Gehäusetemperatur), Timerfunktion bis 255 Minuten oder 255 Sekunden, programmierbare Temperaturkurven, Dauerheizung. Die Bedienung sollte über einen Dreh-Encoder laufen, als Anzeige wird ein LCD mit 2×8 Zeichen verwendet. Zusätzliche LED-Anzeigen signalisieren, ob ein Heizelement gerade eingeschaltet ist, außerdem gibt es eine Betriebsanzeige für die Netzspannung.

    Bis zu 10 Programme je Funktion möchte ich abspeichern können, um so je nach Platine, Bestückung und verwendeter Lötpaste unterschiedliche Kurven fahren zu können. Eine Fernsteuerung über Netzwerk habe ich auch eingeplant, zusätzlich lässt sich das Gerät über den USB-Anschluss seriell (RS232) steuern.

    In meiner Arduino-Kiste habe ich noch ein IBoard EX von iTead gefunden, welches genau das richtige Format und alle nötigen Funktionen hat.

    iboard_ex

    Auf dem Board sitzt ein ATMega32U4 mit Leonardo-Bootloader. Dieser USB-Bootloader verlangsamt den Systemstart etwas, deshalb werde ich den wohl irgendwann mal rausschmeißen.

    Das große Flatpack ist ein Wiznet-Controller für das Netzwerk. Außerdem ist noch ein SD-Sockel verbaut. Die Anschlüsse sind nicht Arduino-kompatibel, aber das war hier auch nicht wichtig, weil ich eine spezielle Steuerplatine gebaut habe, die direkt auf dem iBoard sitzt und an den passenden Pins andockt.

    Das Bedienteil befindet sich auf einer separaten Platine, die im Frontpanel eingebaut ist und über Flachbandkabel mit dem Steuer- und Leistungsteil verbunden wird. Die Heizelemente werden über zwei Solid-State-Relays S202S02 von Sharp geschaltet.

    pcb_ready_etched

    Auf der linken Seite ist das Bedienteil, die rechte Platine enthält die Leistungselektronik, das Interface zum IBoard und einen Delta-Sigma-A/D-Wandler MCP3550 für die Temperatursensoren. Die Spannungsversorgung läuft über ein kleines Schaltnetzteil, das ebenfalls im Frontpanel sitzt.

    So sieht die fertig bestückte Leistungsplatine aus:

    power_pcb_assembled

    Das schwarze Plastikteil hinten links ist ein Piezo-Summer. Im Vordergrund ist der Kühlkörper für die S202S02 zu sehen, davor befindet sich der Snubber-Circuit, das ist eine RC-Reihenschaltung als Dämpfungsglied. Einen Überspannungsschutz (Varistor) habe ich zur Sicherheit ebenfalls eingebaut.

    So viel erst mal für heute. Die Programmierung und Kalibrierung ist ein eigenes Kapitel und wird in einem späteren Beitrag erklärt.


  • Per E-Mail folgen

Schließe dich 88 anderen Abonnenten an

Folge mir auf Twitter

Follow

Get the latest posts delivered to your mailbox: